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In this paper we deal with systems of infinitely many particles in R 3, given by a 
two-body, short-range potential and an external potential, depending on the 
position of the particles. We show the existence of dynamics for a set of initial 
configurations, which has measure one with respect to the Gibbs measure 
induced by a suitable family of Hamiltonians. 
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1. INTRODUCTION 

The existence of time evolution of infinitely many classical particles has 
been much investigated in the recent literature. Such systems are very 
difficult to study, since the presence of infinitely many particles could give 
rise to catastrophic situations, which actually do happen: a particle with 
infinite velocity or infinite particles in a bounded region in a finite time. 

This problem arises quite naturally in a statistical mechanical frame- 
work (l) and a reasonable way to approach it is to prove that, for a 
sufficiently large set of initial conditions, the motion of one particle is not 
so much affected by very far away particles. Then the evolution of each 
particle is essentially described by what happens in a bounded region 
around it, and this enables us to define the infinite dynamics as the limit of 
suitable finite particles dynamics. 

Much care has to be devoted to the set of initial configurations which 
we want to evolve. It would be very easy to make the evolution of some 
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statistically "rare" set of initial data (e.g., with finite energy), but this would 
be uninteresting from a statistical mechanical point of view. Actually, we 
are interested in describing the evolution of a set of initial conditions, 
sufficiently large to be the support of thermodynamically interesting mea- 
sures, like the Gibbs states. 

In 1968 Lanford (2) proved an existence theorem for the dynamics of 
one-dimensional systems given by a two-body, short-range, and smooth 
potential. Dobrushin and Fritz in 1977 enlarged his results to singular 
potentials (3) and to two dimensions. (4) Moreover, they showed, by con- 
structing an example, that their arguments, based on the energy conserva- 
tion law, would not work at dimensions higher than two. 

A very recent result is given by Pulvirenti. (5) He studies the evolution 
of states, instead of phase points, and shows the existence of the dynamics 
induced by a Hamiltonian H0, for a state which is Gibbs with respect to 

A A 

H 0 + h, where h(q) is an external potential satisfying 

e x p [ - h ( q )  exp ~ 

where d >/ 1 is the physical dimension. 
In this paper we try to make further progress in this direction. We 

show the existence of the solution of the equations of motion for an explicit 
set of initial configurations %0, which is of full measure with respect to a 
Gibbs measure p, given by a Hamiltonian/~ -- H 0 + h; H 0 is given by both 
kinetic energy and a two-body, smooth, and short-range potential, and hA is 
an external potential which forces the particles to be ""quasi-one- 
dimensionally" distributed. More precisely, h must satisfy the following 
condition: 

re -'~i(q) dq < c,~o l+" Va ~ R + (1.2) 

for any sphere F of diameter o and e < - 2 + ~ (c a is a positive constant 
depending only on a). All configurations in %0 evolve under the action of a 
Hamiltonian H = H 0 + h, where h is any Aexternal, smooth, one-body 
potential, bounded from below, with h(q) < h(q).  

We prove the existence of infinite dynamics for such systems, by 
means of a method used in Ref. 6 and classical energy conservation 
arguments. 

We remark that the techniques involved here are completely different 
from those used in Ref. 5. Also, condition (1.2) is unrelated to (1.1), unless 
we are in the presence of asymptotically divergent external fields: in this 
case, (1.2) is weaker than (1.1). 



Time Evolution of Infinitely Many Parlicles 817 

2. DEFINITIONS, NOTATIONS, AND RESULTS 

Let us consider a system of infinitely many particles of unitary mass in 
R 3. We recall some usual definitions, which we will make use of in the 
following. 

Let x denote a double sequence of positions and velocities, i.e., 
x = {(qi, Pi)}i=l . . . . .  (qi, Pi) E R 3 X g~3. 

Definition 1.1. x is called a locally finite configuration if for any A 
bounded open set of R 3 it is: 

where 

I x N ( A x R 3 ) I <  +oo 

x n (A • R ~) = {(q, ,  p,) ~ x : q, ~ A}  

and [{. )[ stands for the cardinality of the set {-}. 

Let 90, the infinite phase space, be the set of all locally finite configura- 
tions, after having identified all sequences which differ only by a permuta- 
tion. % is a topological space, if we define the following convergence: 

Definition 2.2: Local Convergence. A sequence x n =  {(qT, 
P~)}i=1 . . . . .  oo converges to x = {(q~,Pi))i=l . . . .  in % if (i) for every A 
bounded open set of R 3 such that Ix r3 (0A • N3)I = 0, it is definitively 

Ix" n (A x a~)l = Ix n (.A x R~)I 

(ii) there is an ordering on particles in A such that limn~oop7 =Pi  and 
limn--,ooqi n = qr 

Let Z denote the o algebra of Borel sets of %. 

Definition 2.3. A state is a probability measure on (%, E). 

For any A c N3, let %(A) be the phase space of all finite configura- 
tions, namely, 

~ A )  = U % ( a )  
n>O 

where %n (A) is the symmetrization of (A x ~3)~. %~ (A) is endowed with its 
natural topology. 

DefiniUon 2.4. A finite volume state t, A is a probability measure on 
(%(A), E(A)), where Z(A) is the o algebra of Borel sets in %(A). 

Our particles interact via a two-body potential q): R + --> R, r--> @(r). 
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It is given also the action of an external potential h : N 3 ~  R, q ~ h(q). 
We assume the following: 

Propertios 2.5. (a) Short range: 
C2([0, R], R), ~'(0)---O. (c) Stability: Let 

ffP(r)=O, Vr >> R > O. (b) r E 

(i) 

(ii) 

where 

1 

U(q, . . . .  , q,) = ~ -~ cb(llqi - qjll) 
i , j =  1 , . . . ,  n 

j#i 

then there is a positive constant B l such that 

U(ql . . . . .  q,) > - B i n  

(d) h @ C2(R 3, R) and there exist b, ok, ak, a '  positive constants, with k = 1, 2 
and t~' < 1 such that 

h(q)>l - b ,  V q E N  3 

16D(k)h(q)l <~ Ck[[h(q)[]~'+ ak 

[| = max [(Vh(q))~[ 
r = 1 , 2 , 3  

1~(2)h(q)l = max [ a(Vh(q))r- 
r,,=r,2,3 a(qL I 

with (v)k the kth component of the vector v. 
We want to show that a considerably large set of initial configurations 

%o c % evolves following the Newton equations. More precisely, we want 
to prove the existence of a one-parameter group of transformations of %o 
into itself, T,: x ~ x( t)  = T,x such that x(0) = x and, setting x(t)  = {q;(t), 
pi(t))i=l . . . . .  ~ ,  it is 

{qi (2.1) 
Pi 

p, = V,(T,x) 

where F~(Ttx) = - ~] ~jVi~(]l qi - qjll) - V,h(qi). 
The flow 7", will be obtained as limit of suitable partial dynamics, 

which we now define. 
For any t ~ R, x E %, and A, open ball of •3 centered at the origin 

and of diameter n, let T Tx = x"(t)  be the solution at time t of the Newton 
equations describing the evolution of x N (A, • R3), induced by both 
interparticle and external fields, assuming that particles in A, do not 
interact with those in A], which are frozen. For the hypotheses on h and 
and for the local finiteness of x, such solution does exist for any t ~ ~. 

T 7 is called the nth partial dynamics. 
Given g ~ ~3, o ~ R +, let r a ( g  ) denote an open sphere in N 3, of 

diameter o and center g. 
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(a) 

(b) 

Let us define 

For  any x ~ % let us define the following quantity: 

H(x; /~,o) = ~ I]pill 2 + ~ qb(llqi - qj-[I) + ~ h(q~) + ~], (B + I) 
�9 i , j  i i 

i~j (2.2) 

where ~ means that the sum is taken over the particles in Fo(/D and 
B = B I + b .  

Notice that, by Properties 2.5 (c), (d), H(x; /z,o) > 0. 

For  any c satisfying 0 < e <v~- - 2, let cp : R + o R + be a continuous 
function defined as 

~( . )  = m a x ( I , ( . )  ~ ) 
(2.3) 

( l + e ) / 2 < V < ( 1 - e ) / ( l + , )  

//(x; 
Q(x) = sup sup (2.4) 

%~ {x E% :Q(x) < (2.5) 

We will show the existence of the evolution for configurations in %o- 
Furthermore this set will turn out to be of measure 1 with respect to 
physically "interesting" measures. 

We give now our main theorem, whose proof will follow in Section 3. 

Theorem 2.6. Suppose ~b and h satisfy Properties 2.5, with a '  < (1 - 
e)/(1 + e), e as in (2.3). It is possible to define a one-parameter group of 
transformations Tt:%0 o %0 x ~ Ttx such that the following are true: 

(i) Ttx = lim,~ooTtnx in the sense of the local convergence, for any 
t E R ,  x ~ %  o. 

(ii) If we put  Ttx = (qi(t),pi(t))i= 1 . . . . .  ~, then for any i, qi an d p i  
are differentiable functions of time and satisfy (2.1). 

(iii) There exist a continuous increasing function g : R  + o R  + and 
o~ ~ R + such that 

Q(T,x) <<. g(It])[ Q(x)]  ~ 

(iv) Ttx is the only solution of (2.1) in the class of all solutions 
satisfying the bound: 

Q(Ttx ) < G(t, Q(x)) 

where G is any continuous function of both the arguments. 

3. EX ISTENCE AND U N I Q U E N E S S  OF THE D Y N A M I C S  

Before going on with the proof of the theorem, we prove some 
estimates; we will make an essential use of the energy conservation law. 



820 Calderonl and Caprino 

and 

For any x ~ %o, let us set 
n t n t = {q, ( ),p, ( ) )  

D(n,t) = sup sup Ilqf(*)- q,(0)[I 
qi(0) ~ An 0 < r < t 

From now on we will write x in place of x(0). Furthermore, A and I" 
will stand for open spheres in R 3 and any other region will be indicated 
with ~2. 

Estimate 3.1. 

f T D(n,t)  < sup sup llp; (s)ltds 
q i ( 0 ) E A .  0 <  ~" < t 0 

<<. t[2H(x;O,n) ]1/2 < t[2Q(x) ]'/2n(1+~ 

This immediately follows from (2.4). 

Let %e (n, t) be the number of particles that interact with the ith 
particle, in the nth dynamics, during the time interval [0, t]. We have 

Estimate 3.2. There exists a positive constant Co such that, if [[qi(O)[t 
n ,  

%,(n, t) << cotl+'Q(x)(3+')/Zn(l+~ [7 as in (2.3)] 

Proof. From (2.2), (2.4), and the properties of (I), we get 

%i(n,t) <. H(x;qs(O),2O(n,t) + R)  

<<. Q(x) . [2D(n , t )  + R + qo(l[qi(0)l[)] 1+' 

The Estimate follows from 3.1 and (2.3). 
From Property 2.5 (d) we finally have the following: 

Estimate 3.3. 

sup sup ]|162 c~[H(x;O,n)]"'< c~[ Q(x)]"'n ('+0"' 
q~(O) E A .  0 < , r <  t 

f o r k =  1,2. 

Proof of Theorem 2. 6. We will give the proof in three steps. Step 1: 
for any x ~-%0, Tfx locally converges to Ttx; step 2: Ttx is a one- 
parameter group of maps of %0 onto itself; step 3: Ttx is unique in the 
sense of (iv). 

Step 1. Let x be any configuration in %o and Tfx its evolution under 
the nth partial dynamics. Let Ak0 be an open sphere of R 3 centered at the 
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origin and of diameter k o and take n ) [k o + 2D(n, t )  + R + 1], where [.] 
stands for the integer part. 

We will denote 

8i(n,t) = I[qf+l(t) - qT(t)l[ 

uk(n , t )=  sup 6i(n,t), k <  n 
q~(0) eAk 

Let n be so large that particles in Ako, in the (n + 1)th partial 
dynamics, during the time interval [0, t], are not influenced by particles 
initially in An+ l\An. Then by the Newton equations, we get 

re(n, t) < f0*lip? +1 (~) - e,~ (~)ll 

Let us compute now 

II F i (~s  "+ 'x) - F;(Vs"X)ll 

< Y~. { I v , ~ ( l l r  q/+'(s)tO - v ,~(t lq;~. , ) -  q;<~)Jr)) 
i ~ j  

+ L I v i h ( q ; + ' ( s ) )  - v , h ( q , " ( ~ ) ) l t  

MY, (Eli~, ,+*(s)-  q;(s)11 + llq;+'(~) - q/~(~)ll]x,(qj(~))) 
iv~j 

+ C ~ n ( l + ' ) a ' l l r  ) -- r  (3.2) 

this follows from Estimate 3.3, with M =  max0<~<Rl~"(r)l and X~. the 
indicator function of the set ( ~ : l l q i ( s )  - qj(s)rl < R }. Then, if we call A~, 
the open sphere containing the particles that could influence particles at 
time 0 in Ako, during the time interval [0, t], we get 

(3.2) < 2M%~(n + 1, t)uk~(n, t) + c2n (l +')~'uk,(n, t) 

then, by virtue of Estimate 3.2, taking the supremum over Ako in (3.1), we 
have 

and k 1 = [k o + 2D(n, t )  + R + 1] 
We can iterate the procedure l times, if 

l (2D(n , t )  + R )  < n / 4  (3.3) 

From Estimate 3.1, choosing I = C4( [ Q(x)]l/2t)-~n (~-'~/2 inequality (3.3) 
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is satisfied, and hence 

Uko(n,t ) ~< (2C3[  Q(x)]l/2t)(3+'~ln(l+')('+l~'[(2l)!1-1 (3.4) 

with 8 = m a x { a ' , 7 ) .  Moreover ,  by  the choice of l, 

Uko(n,t ) < C~[ O(x)t2]8"l 2~'(1+0/(1-') �9 [ ( 2 l ) ! ]  - l  (3.5) 

with 8 '  = 1 + 28 / (1  - e). Then  Uko(n,t)~O as n o  oo in an integrable way, 
having chosen e and 8 as in (2.3). 

We  can find the same result for  the following quanti ty:  

Vko(n, t) = sup 'oi(n, t) 
q~(O) ~ A~o 

with ~]i(n, t) = IlPi"+~(t) - pn(t) l  I. 
Analogously  we get 

Vko(n,t ) <~ c / + l [  Q(x)t2]n'(t+Ol26(l+O('+l)/(l-')[(2l)!] -1 (3.6) 

(C3, Ca, C5, C6 suitable positive constants).  
This shows that  qr(t) ---> qi(t) and pT(t) ~ Pi(t) as n ~ oo. 
Call T~x = (qi(t), pi(t))i=l . . . . . .  . In  order  to prove that  the conver-  

gence is in %, it remains to be shown that  Ttx is locally finite. To  this 
purpose,  we now prove  an n-uniform estimate for  the displacements.  If 
s < n, we can write 

n--1 
Ilq?(t) - q~(0)ll < IlqT(t) - qe(0)[I + ~ Ilqm+~(t) -- qm(t)[I (3.7) 

m = s  

Again let qi(O) E Ako and 

s > / 2 [ K o +  2D(s,t) + R] (3.8) 

By Estimate 3.1 and Eqs. (3.3) and (3.4) we have 

IIqT(t) - q,(0)]] < t[2Q(x)]l/Es(l+r + bl(x,t ) ~ m -~ (3.9) 
m>/s 

where 

0 < 0 < c o n s t / t [ Q ( x ) ] ' / E , v = ( 1 - e ) / 2 ,  and b , =  (t[2Q(x)]'/2} 2. 

Then  

DA~o(n,t ) = sup sup IIq7(r qi(0)ll 
qi(O) ~Ako 0 ~< �9 < t 

< t[2Q(x)]l/Es ('+'~/2 + bl(x, t)e -~ 

< 2 ( ' [  Q(X)]I/2}2S(I+e'/2 (3.x0) 
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By (3.8) and Estimate 3.1, there exist b 2 and b 3 positive constants such that 
s can be chosen as 

s = { [  Q(x)]l/2t}~(b2 + bak0), ~ E ~  + (3.11) 

Then, by (3.10) and (3.11) it turns out that the number of particles of Ttnx 
in Ak0, NAk o, (Ttnx), satisfies 

NAko(Tfx ) <<. Q(x)[ Ko + 2bl(X,t)s2(l+')] 1+" 

<. b 4 Q(x)(  t[ Q(x)]1/2} b,(1 + e)2ko 1 +e (3.12) 

Moreover, let us note that, if f~o is any bounded open region of ~3 with 
diameter o, we have ~2 o C Fo,(g) C Ako for some /~ where k o = 2(11 gl[ + o') 
and o' is some multiple of o. Then, analogously we get 

Na~ ) <<. boO(x)(t[ O(x)]1/2} bs(a+,)~(i I/zl[ + o)l+,  (3.13) 

b4, bs, b 6 are positive constants. This means that Ttx is locally finite. This, 
together with (3.5) and (3.6) concludes the proof of step 1. 

Step 2. Let x E %0 and F o (/~) such that 

I r ,  x n (aro (~ )  • R3)I = 0 

Then for n ~> N sufficiently large, it is: 

l r ; x  n (a ro ( . )  x R3)[ = o 

and furthermore 

I r / x  n ( to (g)  x R3)I = Ir ,  x n ( ro(~)  x a3)l 

We shall prove that it is possible to find an n-uniform estimate for 
H(Ttx; /~, o). This will allow us to define 

n(r ,x;  ~,o) 
Q(Ttx ) = sup sup < + m (3.14) 

~ R  3 o>~(ll~ll) ol+( 

(3.14) will be proven, once we succeed in showing that 

Q(Ttx) < g(Itl)[ Q(x) ]  ~ (3.15) 

which is a condition stronger than (3.14). 
Let s/> N; we have 

n--1 
/r ~,,o) =/-/(rTx; ~,.) + E H (  ztm+lx; ]s - n(Ttmx; /.s 

m=s 
(3.16) 
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Let us call 

56r(t,m ) = H(Tt+lx;  i~,o) - H(Ttmx; ~,a) (3.17) 

[F stands for F~(t~)]. It is 

I%r(t,m)l < Nr(T[~x)[2Q(x)]l/Zm (1*~)/2 sup ~i(m,t) 
qi(0)~r 

+ N2(T•x)M sup ~i(m,t) 
q,(o)~r 

+ Nr(TF'x ) sup 8i(m, t)C3 m(l+')~ (3.18) 
qe(0) E F 

Now we choose s as in (3.11), with k o = I[/~[[ + o. Using (3.5), (3.6), and 
(3.13) we get 

I%r(t, rn)l < aA(t,x)(ll t~ll + o) 2(l+')m(l+e)B'e-O(t'x)m" (3.19) 

where/3'  = max{a',�89 } and 

al(t,x) = g(Itl)[ O ( x ) ]  ~ (3.20) > 

with ~o E R + and g(Itl) = const- Itl z, z e •+. Therefore 

n - 1  

I m~s%r(t, m) < g(Itl)[ Q(x)]~([] vii + o) 2<l+')s(~+')~'e-~ (3.21) 

Since s is proportional to [I/~[I + o, the right hand side of (2.21) goes to 0 as 
s---> m; then, for sufficiently large s, 

n--1 

m~=s~(t,m ) << a2g(Itl) [ O(x)]  ~ (3.22) 

(a 2 is a positive constant). Finally, (3.11) and Estimate 3.1 imply 

H(r;x; + 

(3.23) 
Then (3.15) follows by (3.22), (3.23) and (2.3). The same result holds also 
for any bounded open region for which [TFx N (3f~ • R3)I v ~ 0. In fact, 
since x is locally finite, it is possible to find an open sphere F,(/~) which 
strictly contains f~ and such that 

ITTx cl (SFo(/~) X R3)[ = 0 (3.24) 

Step 3. Uniqueness of solutions is immediately seen, by the same 
arguments used in step 1. If qi(t) and Qi(t) denote position at time t 
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corresponding to the same initial datum q~(0) = Qg(0), we have 

IIq~(t)- Q~(t)l I <~s - Fi( Q~(z))[d.c 

< const.  Ilqi(O)ll(l+'~(td.r(~ds sup Ilqj(s) - Oj(s)ll 
JO JO qj ~Ak~ 

(3.25) 
where 

k I = []qi(0)[I + 2t[ Q(x)]l/Zllqi(O)l[(l+')/2 

We can iterate the procedure n times, with n arbitrarily large: 

(3.25) < const"" (tlqe(0)ll + nl[qi(O)ll(~+'~/2) ~1+')~ [(2n)!] -1 (3.26) 

But the right-hand side of this inequality runs to 0 as n ~ ~ and so we get 
the uniqueness. 

4. %0 IS A FULL MEASURE SET 

In Section 3 we have constructed a one-parameter group of transfor- 
mations defined on a subset %0 c %. Our purpose is now to prove that %0 
is a measure-1 set, with respect to the Gibbs measure induced by a class of 
suitable Hamiltonians. 

Let us introduce the following definition: 

Definition 4.1 (Superstability). Denote by •2 a partition of ~3 with 
cubes A of side k > R and by n (x, A) the number of particles of x in A. Let 
U ( x )  = ~ i ~ j l d p ( l [ q i  - qj'll)" f will be called superstable if there exist posi- 
tive constants A and B such that 

U(x) >1 ~ An2(x ,A) -  Bn(x,A) 
z~E~x 

Consider the following function on %: 

I4(x) = ~ �89 q - ~a �89 - qj]l) + ~al~ (qi) 
i i ~ j  i 

where ~ satisfies Properties 2.5 (a), (b) and Definition 4.1, and/~ satisfies 
the following properties: 

Properties 4.2. (a) Let a > 0; there exists Ca > 0 such that, for any 
open sphere F , (#)  it is 

r e-~i(qi) dqi < C~o 1+" 

(b)/~(q) - h (q) >/0 where h is the external potential in (2.2). 
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Define the following measure: 

1 dq ld l )  1 dqnd13 n X(dx) = 1 + ~ ~. .. .  
n > 0  

with dqi dpi the Lebesgue measure in ~3 • R3. A finite volume Gibbs measure 
relative to the Hamiltonian H is the probability measure on (%(A), Y.(A)) 

1 e " l%A(dx ) = ~ - Bn(x~ X (dx) (4.1) 

where Z A, the normalization, is given by 

zA = f~(A)e - ~i~(x) X (dx) (4.2) 

with/3 = 1/kT,  T is the temperature, and k the Boltzmann constant; A is 
any bounded Borel set in %. 

Equation (4.1) is well posed for the properties of U(x) and/~(q). 
Let us recall another definition. Let A be a bounded Borel set in % 

and ql . . . . .  q, n particles in A. A finite volume correlation function relative 
to the Hamiltonian H is the following function: 

oA(ql, �9 �9 �9 q.; Pl . . . . .  P.) 

_ 1 1 

- z-~ k2>0 ~., 

fa • ~fxp ( { . . . .  , "+k[ '1 "~ ] }) x -/3 ~(q, q~+~) + ~ t;(q;) + @ 
i = 1  

dq ~ . . . dqk dp l . . . dp~, (4.3) 

OA(ql . . . . .  qn; Pl . . . . .  p,) is proportional to the probability measure (with 
respect to the Lebesgue measure) of finding n particles in the positions 
ql . . . . .  q, inA.  

We will give now a crucial estimate for the correlation functions. After 
this, we shall get existence for the infinite volume Gibbs measure and a 
control on the expectation value of H on any open sphere. 

First of all, we need a theorem whose proof, rather technical, which is 
a slight modification of that given in Ref. 7, will be found in the Appendix. 
In this proof, we make essentially use of the superstability of U(x). 

T h e o r e m  4 . 3 .  Let �9 satisfy Properties 2.5 and Definition 4.1. There 
are O, 8 > 0, O < l such that 

Pa(ql . . . .  , qn ; Pl . . . . .  P~) 

< e x p ( - f l O U ( q  1 . . . . .  qn)-fl i~=l[ ~ +t~(qi)]+n~ } (4.4) 
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For any E(A)-measurable function f ,  denote by 

Vr = (dx) ( 4 . 5 )  

the expectation value of f relative to P/~,A, 

Theorem 4.4. Let vB, 6 the Gibbs measure defined in (4.1) and 
Fo(~) c A. For 3  ̀> 0 sufficiently small, there exists a ~ > 0 such that 

vB,A(eXU(x;,,o)) < e~.l+c 

Proof. From Definition (4.3) we get 

v ~,a ( e2'*l( x;~,')) 

~< ~]. '~' ~,' 1711 (.~• . . . . .  qk ,P,  . . . . .  P~) 
k > O  

• exp(3`[ U(q 1 . . . . .  qk) 
L 

+ • + h ( q i ) + 2 ( B +  I) dqldp] . . .dq~dpK 
i = 1  

By Theorem 4.3 and Property 4.2(b), choosing )t so small that riO - 3  ̀> 0 
we get 

-fiT. z'k e~'k(~ e-(B-x)s k vfl,A(e ~~ <~ ~ dq,) 
where z' = fR~exp[- ( f l  - 3`)(IJPill2/2)dpA and 6' = 6 + (flO - 3`)B + 23, 
(B + 1). Therefore, by Property 4.2(a), we get the thesis, with ~ = z'e ~'. 
const. 

From Theorem 4.3 and Ref. 7, it is possible to define an infinite 
volume probability measure v B on (%, s as weak limit of finite volume 
Gibbs measures va,a, for some sequence of Borel bounded sets A invading 
R3, i.e., 

v~( f )  = lira va,a(f) (4.6) 
A ~  3 

for every continuous, bounded function f :  % + R. We prove the following 
theorem: 

Theorem 4.5. Let v B be the infinite volume Gibbs probability mea- 
sure defined in (4.6). Then 

~e ( % )  = 1 

Proof. First of all, we note that %o ~ Y', since Q(x) is a measurable 
function. We will get the thesis, if we can show that 

(%) = 0 
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For any s E Z +, let us set 

D~= {o E R  + 

and 

Then it is 

where 

:o=m/2",m~7/+ ) 

/~ = { / ~ 3 ,  /~=(/~l, /z2, /'3):~,"~ m/2S, m~g)  

~ C 0 ( x : Q , ( x ) = o o }  = 0 6 ( x : Q , ( x ) > r }  
s=O s=Or=O 

Q,(x) = sup sup 
~ E D  s oED~ 01+~ 

o> ~o(11NI) 

On the other hand, for any s E 7/+, we have 

(x:O.Xx)>r}C U U to'+'} 
fLeD, o ~ D,,o > cp(I[ ~[I) 

and so 

vB((x : Q~(x) > r}) 

(4.7) 

(4.8) 

with []/~[] = sup,]/~/1 = k/2 s. 
By Theorem 4.5 and the Tchebychev inequality it follows that for any 

ro( ) cA, 

E P~,A({X :exp[XH(x; /~,a)] > exp(Xra~+~)}) 
a/> ~ ( k / 2  ~) 

< exp{ - ( h r  - 4)[ q0(k/2 s) ] ' + ' ) "  const (4.10) 

(4.10) is true also for p~, since it is independent of the choice of A. 
Then, for r > 0 large enough, we have 

p/~((x : Q,(x) > r}) < ~. e x p { - ( X r -  ~)[q0(k/2")] '+ ' )  �9 const (4.11) 
k>0 

and, for the properties of q0, 

pr : Q,(x) > r})---) 0 as r ~  oo (4.12) 

So we get the thesis, by (4.7). 

Remark. In this proof it is not necessary to take qo(k) growing as kY; 
it would have been enough a logarithmic growth. 

< ~ [(2k) 3+ 1] ~ v ~ ( ( x : e  x~(x;~'~ >/ eX'~247176 (4.9) 
k>O a~Ds  
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5. C O M M E N T S  

Let us interpret the results that we have obtained from a physical point 
of view. Let h -- 0 and/~ satisfying Property 4.2 then Theorem 4.4 proves 
that we are able to evolve a subset %o of initial data such that PC(%0) = 1 
and to obtain an evolution for a class of states which are spatial perturba- 
tions of equilibrium states, Gibbs with respect to /~ ,  of the system. 

Note that %0 is a measure-1 set also for other classes of states. For 
example, we can consider states which exhibit suitable temperature 

A 

gradients, together with an external field h; %o will still be of measure 1, as 
can be easily seen by obvious modifications in the proof of Theorem 4.5. If, 
on the contrary, we are in presence of a physical situation in which there is 
an external field h (for example, particles in a suitable electric field), then 
the previous result for h = h enables us to get the time evolution of 
nonequilibrium states supported on %o. 

In this paper we have given a generalization of these two cases. 
Let us also remark that Property 4.2(a) permits fields with cylindric 

symmetry, asymptotically growing at least as (log0) 1+~, where ~ > 0 and 0 
is the distance of the particle from the symmetry axis. Nevertheless, as we 
can see by a direct inspection of the arguments used in the proofs, it is 
possible to consider external fields growing as log0. In this case, however, 
not every value for the temperature is allowed. 

Finally, as a consequence of Theorem 2.6(iii), let us note that there 
exist time-dependent correlation functions, related to the time-evoluted 
Gibbs measures P~,t defined as 

vB, t(A ) = vB(T_tA ), VA ~ X 
In fact, for any bounded function f:  ~--)R, with ~ c (R3• R3). a 

compact set, there exist a ~ ~+ such that 

f%PB,t ( dx)l f( x)l ~< maxl f( x)i " cost@'B,, (dx)[ Na( x) j'~ 

~< max If(x)l" cost. g(Itl)"~xv~(dx)[ O_.(x)]~'~ 

Then, by standard arguments, we can prove the existence of time- 
dependent correlation functions &, satisfying the BBKGY hierarchy in the 
weak form (e.g., see Ref. 5). 
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APPENDIX: SOME PROBABILITY ESTIMATES 

We will now give the proof of Theorem 4.3. We remark that our 
estimate holds also for divergent two-body potentials and slightly improves 
Ruelle's estimates. (7) Nevertheless the techniques involved are the same. 

A 

Furthermore, h is not needed to satisfy Properties 4.2, since we will only use 
its boundedness property. 

We note first that, in case of zero particles, Theorem 4.3 is immediately 
proven; then we shall make use of the inductive method on the number of 
particles. The result will be valid in N a, d > 1. 

Let us define the following quantities. 

Definition 4.1 (Interaction Energy). 

W(XAIXA.)---- ~ ~ q'(iiq,--qjll) 
q~A ~b~A' 

where 
X A = X n ( A x N d ) ,  X E % ,  A C N  d, A ' C A  c 

Definition 4.2. 

E~(x)= ~ .2(x,a,) 
Ai ~ r 
Aic~ 

where Px and a, are the same as in Definition 4.1 and [~ c R a. 
Definition 4.1 implies that, given any A c R a, we have the following 

decomposition: 
U(x) = U(xA) + V(xAc) + W(xA I xAo) 

Consider now a sequence of open cubes in N a of side 2kR, k ~ Z and 
R the range of q~. From 4.1, 4.2 we immediately get the following Esti- 
mates: 

Estimate 4.3. For any k > 1 and x E % it is 

W ( x &  I xa;) > - m  ~,,' n(x,  Ai)n(x, Aj) > -2amE&+,(x)  
A i C A k 

AjCAk+I\Ak 

Estimate 4.4. For any k > 1 and x ~ % it is 

~(x,  A,) + ~2(~, Aj) 
W(x~klx~ 0 > - m  E' 

a, c & 2 
A/CAk+I\Ak 

> - 2am[ E&+,(x) - E&_,(x)] 

where m = -inf[0,Rl~(r) and ~ '  is the sum over the A i, Aj's first neighbors. 
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For any bounded open region A c Na and q > 1, let us define the 
following sets: 

~q -- {x ~ %(A):  Ehq_,(x ) > alAq_l] ) 

gq -- {x E %(A):  EAq+,(x) ~< alAq+:l, Vj/> 0} 

Here [Aql stands for the volume of Aq and a is a positive constant. 
Let Xq and )~q be the indicator functions on Sq, Sq, respectively. It is 

easily seen that 

Moreover, let us put 

I s  = ZA (A) 

1 

where x = {(qi, Pi)}i= l . . . . . .  . We can suppose, without loss of generality, 
that one of the n particles ql . . . . .  q,, is in the origin of ~d This will ensure 
that at least one particle is in Ap, p > 1. We will prove the following 
inequalities: 

Ip ~< Csexp{--flO,[ U(XA~) + W(xA,[xaT)] -- fl E [l~(q*) + ]tPgl]2/z] 
ql E A  e 

+ ~,,(x, A A } pa(xA;) 

Iq <~ Cqexp(-flO:[ U(xA~ ) + W(XAq IxA0] 

(A2) 

--~ E []~(qi) + ~ ] + ~2rt(X, Aq))PA(XA~q) (A3) 
qi E Aq 

with 01, 02,/~l, 82 positive constants; Cp and C. positive constants depend- 
ing on p, q, respectively, and such that 

Cq < + oo (a4)  
q>0  

On the other hand, we have 

oA(q, . . . . .  q.; p, . . . . .  p.) = I e + ~ I q  (A5) 
q>p 
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Therefore, since Ix N A~I < n, Vk >p,  we can apply induction on the 
right-hand side A2, A3, and then, by (A5), get the thesis. 

Proof of (,42). Let z = x tJ y, y = {(q~, PD} ~ ~p. By stability of U 
and Estimates 4.3, for 01 < 1 we get 

U(z) > 01[ U(x%) + W(XAflXA<) ] + U(ZA~ ) -- Bh(q, Ap) 

- ( 1 -  O,)Bh(x, Ap)-  2dma[(1 + 001Ae+,l + IApI] (A6) 

and then, by the decomposition X(dy) = X(dy%) . h(dyA~ ) 

Ip < exp{ -/30,[ U(XAp ) + W(XApIXA~)] 

--t0 ~,, [l~(qi) + llp~il2/Z] + Sln(x, Ae)} 
qi E Ap 

• A e ) -  B ~ []~(q~)+ Np~H2/2]} 

X lilzjfX(dyA~)exp(--13U(zAj ) --flq,~[ h(,)-I-I[~ '1--~--~2 ] 

+ Bm2da(2 + 0,). Iap+,l } (A7) 

and then we get (A2), with 

cp = exp[ Bm2aCdAp + 11 + zeB~"+~)ClA~l] 

Proof of (A3). Let z = x m y, y ~ ~q n ~q. By Estimates 4.4 and 
superstability of U, for 02 < B/(2'*+2m + B), we have 

U(ZAq ) >/ 02[ U(ZAq) "1- W(ZAq l ZA~q) ] 

+ (I - o~)[ v ( % )  + w ( ~  I z~)]  + tr(z~) 

(1  - o=) 
- m(1 + 02)C4q a-I 1 + 02 Bn(y, Aq) Bn(x, Aq) 

2 2 
(AS) 
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~ e n  

Iq < exp{-flO2[ g(Xl~q)"t- W(XAqlXAcq)] 

+82n(x ,  Aq) - fl E []~(qi)  + IIpiII2/2]) 
qiEAq 

• ~flB'(l+~)n(y'Aq)-flqs~A+[l~(q:)+ "~11-----~2 ]) 
• v(:,<,)- n E lt.;ll /2]} 
• exp[-CsiAql + m(1 + 02)C4q d-1 ] (A9) 

Let us set 

C q = e X p { z e x p [ f l B / 2 . ( l + 0 2 ) + b f l ] q  a+ C6q a-l- C7q a} (A10) 

where C 7 is a positive constant proportional to a. Then (A4) follows, for 
sufficiently large a, and this implies (A3). 
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